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Metal-catalyzed enantioselective couplings of allylic electrophiles
with carbon nucleophiles have been intensively studied,1 with most
of the investigations focused on palladium-catalyzed reactions of
allylic esters/carbonates with enolates, copper-catalyzed couplings
of primary allylic electrophiles with Grignard and diorganozinc
reagents (SN2′ substitution),2 and nickel-catalyzed reactions of
certain allylic electrophiles with Grignard reagents.3,4 Although
powerful methods have been developed, there remains room for
improvement, for example, processes that accommodate a broader
range of nucleophiles and that display greater functional-group
compatibility. In this report, we describe a versatile nickel-based
catalyst for asymmetric couplings of racemic secondary allylic
chlorides with readily available alkylzinc halides5 (eq 1; DMA )
N,N-dimethylacetamide), and we apply this method to a formal total
synthesis of fluvirucinine A1.

Previously, we have reported nickel-catalyzed enantioselective
Negishi reactions ofR-bromo amides and benzylic bromides with
organozinc reagents.6 Although the regioselectivity of the carbon-
carbon bond-forming process was not a concern for these families
of substrates, we anticipated that regioselectivitywouldbe an issue
for couplings of allylic electrophiles. To avoid this complication
during our initial studies, we chose to examine the reaction of a
“symmetrical” allylic halide. Under the conditions that we had de-
veloped for enantioselective Negishi couplings ofR-bromo amides
and benzylic bromides, we obtained promising results for an allylic
electrophile (eq 2; DMI) 1,3-dimethyl-2-imidazolidinone).

Through optimization studies, we were able to significantly im-
prove the enantioselectivity of this Negishi cross-coupling reaction
(87% ee, 95% yield; Table 1, entry 1).7-9 The combination of a
high ee and a high yield establishes that the process is stereocon-
vergent: the two enantiomers of the racemic substrate are trans-
formed into the same enantiomer of the product with good
stereoselectivity.

As the steric demand of the R1 substituent increases, the
enantioselectivity of the cross-coupling decreases (Table 1, entries
1-5). Thus, good ee’s are generally obtained if the group is
unbranched (entries 1-4), but an erosion in stereoselection is
observed for a hindered diisopropyl-substituted allylic chloride
(entry 5). The Ni/Pybox catalyst can achieve an asymmetric Negishi

Table 1. Enantioselective Negishi Cross-Couplings of
“Symmetrical” Allylic Chlorides with Alkylzinc Reagents (for the
Reaction Conditions, See eq 1)

All data are the average of two experiments.a Isolated yield.b The
production is volatile. The yield was determined by GC versus an internal
standard.c Solvent: DMA/DMF (9:1).

Table 2. Enantioselective Negishi Cross-Couplings of
Unsymmetrical Allylic Chlorides with Alkylzinc Reagents (for the
Reaction Conditions, See eq 1)

All data are the average of two experiments. Regioselectivity,>20:1,
except for entry 1.a Isolated yield.b Regioselectivity, 1.9:1; ee of the minor
regioisomer, 88%.c The allylic chloride is a mixture of regioisomers.
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reaction of a 1,2,3-trisubstituted allylic electrophile with excellent
enantioselectivity (entry 6). An unactivated alkyl chloride is
essentially inert to these conditions (entry 4).

Next, we turned our attention to enantioselective Negishi
reactions of unsymmetrical allylic chlorides. Perhaps not surpris-
ingly, the regioselection is only modest when the catalyst must
differentiate between ann-butyl and a methyl group (1.9:1
selectivity in favor of reaction proximal to the methyl substituent;
Table 2, entry 1); nevertheless, the ee’s are substantial (major
regioisomer, 83% ee; minor regioisomer, 88% ee), and the
combined yield is excellent. For a variety of other electrophiles,
the asymmetric Negishi couplings proceed with excellent regiose-
lectivity (>20:1; entries 2-7).10 Thus, an isopropyl/methyl- and a
t-Bu/methyl-substituted allylic chloride undergo cross-coupling at
the less hindered site with fairly good ee and in high yield (entries
2 and 3, respectively). Negishi reactions of conjugated electrophiles
occur with a strong preference for carbon-carbon bond formation
at theγ position and with excellent enantioselection (g90% ee;
entries 4-7).11

We have applied this nickel/Pybox-catalyzed asymmetric Negishi
cross-coupling to a formal total synthesis of fluvirucinine A1.12 In
1999, Suh reported the first synthesis of this macrocycle, via
aldehyde1 (Scheme 1), which he generated in 16 steps through
use of stoichiometric chiral-auxiliary chemistry introduced by
Evans.13 We have developed an eight-step catalytic enantioselective
route to intermediate1 wherein the two tertiary stereocenters are
produced via asymmetric Negishi reactions of racemic secondary
allylic chlorides. Thus, cross-coupling of chloride2, which is

available in two steps from commercially available ethyl (E)-4-
oxo-2-butenoate, provided compound3 in excellent yield, regiose-
lectivity, and ee. Reduction and then bromination furnished
intermediate4, which was converted to the organozinc reagent and
coupled with an allylic chloride to generate5 in very good yield,
regioselectivity, and stereoselectivity. A reduction/amination se-
quence then afforded target aldehyde1.

In summary, complementing previous advances in allylation
chemistry, we have developed an effective nickel/Pybox catalyst
for regioselective asymmetric Negishi cross-couplings of racemic
secondary allylic chlorides with readily available organozinc halides.
Furthermore, we have applied this method in two key steps of a
formal total synthesis of fluvirucinine A1. Additional studies of
nickel-catalyzed coupling reactions of alkyl electrophiles are
underway.
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Scheme 1. Formal Total Synthesis of Fluvirucinine A1 via Two
Catalytic Asymmetric Negishi Reactions of Allylic Chlorides
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